Because of its torque, angle of rotation, pressure range, positioning accuracy, stability of position, type of attachment and dimensions, the Eckart SM4 rotary actuator can be used in a wide range of applications.

The selection and the size depends above all on the demands and the operating conditions under which the rotary actuator is operating. For the planning of special items, it is also important for us to be aware of all technical details. In order to provide this we have prepared a catalogue of questions on page 15 which you can fax us if any lack of clarity emerge. Our staff will be glad to work out and submit a proposal to you.

We accept no guarantee claims for disturbances in functioning or complaints which are attributable to lack of information by the customer.

[When planning the rotary actuator, we recommend the following]

•The mechanical stops within the rotary actuator are designed to withstand the force created by the maximum allowable operating pressure relating to the maximum permissible torque output. If they are used to stop the load, the forces acting on them, including forces of inertia, must not exceed the force created by the maximum operating pressure.

If higher forces can be expected, we recommend installation of external stops or other methods of control such as end cushioning, as described below, or control valves.

- On hermetic locking of the rotary actuator (e.g. hydraulically controlled double release valves) and the impact of resetting force on the axle a holding pressure is generated. If the holding pressure reaches the level of the operating pressure there is a torque increase on the axle of 38 %. If resetting forces are expected this should be reflected in selecting the size of the rotary actuator. This also has to be taken into consideration in those cases of operation in which the optional end cushioning Z1 is used.
- In order to guarantee a fresh supply of pressure fluid or medium, the pressure connection lines should be kept as short as possible, and/or the directional control valve should be mounted directly onto the rotary actuator. If this is not possible, we recommend a hydraulically controlled double release valve with additional tank line.
- On hermetic locking of the rotary actuator (e.g. hydraulically controlled blocking valves) and the impact of heat from external sources it should be considered that the hydraulic pressure in the rotary actuator increases by about 6-8 bar per 1°C increase of the temperature. In case of substantial temperature increase the rotary actuator could be destroyed. If operating conditions with substantial temperature increases are expected, appropriate protective measures (e.g. safety valves, cycles of operation) should be provided.

- During installation, care should be taken that the drive shaft or hub is perfectly aligned with the counterpart, since otherwise the maximum permissible radial and axial forces can easily be exceeded.
- In the case of option ZN gear hub profile DIN 5480, we recommend a calculation of the torsion and fatigue strength of the shaft. Also see page 8.
- In case of changing the angle of rotation on actuators with the end cushioning option Z1, the cushioning effect on the bottom side should also be changed.
- Ensure that air bleeding S1/S2 is accessible (important in the case of end cushioning Z1).
- The rotary actuator needs to be dismantled when changing replacement parts. It is therefore necessary to allow enough clearance for this to be carried out easily.
- In case of rotary actuators with the end cushioning option Z1, the flowing back of the pressure medium is progressively throttled down which causes the hydraulic pressure to rise on the cushioned side of the piston. In this context it must be ensured that the anticipated cushioning pressure does not exceed the operating pressure maximally admissible. As not all factors can be exactly pre-determined, not all requirement profiles can be implemented in configurations which use the end cushioning Z1. For this reason the details of the execution for the and cushioning Z1.

execution for the end cushioning Z1 must be established under all circumstances during the commissioning of the initial delivery of rotary actuators (we will be glad to assist you concerning this).

ECKART GmbH Construction & Sales Gewerbegebiet Wallroth D-36381 Schlüchtern phone +49 (0)6661 9628-0 fax +49 (0)6661 9628-50 e-mail ek@eckart-gmbh.de										company name department name/ref. street country/postcode/place phone fax e-mail																								
date project													ct										no.											
W	e c	alc	ula	te f	ory	you	l														9	torque output M _d Nr										Nm	٦	
=1																					10	mass moment of inertia										kgm²		
Faa -																					11	lever							r			mm		
F _{AE}											2									12	centre of mass							R			mm			
																				13	mass							m			kg			
																					14	reset power, holding power							Mr			Nm		
	fit	ting	pos	sitior	n of	roto	ary c	actua		5										15	radial load							F _R			Ν			
1																			16	axial load						Faa			Ν					
								_										-	17	axial load						Fae			Ν					
		4		В			С			D			E		F	-		G	,		18	rec	quire	d wa	orkin	g p	ressu	Jre		PA			bar	
2		options																		19							PB			bar				
_	Z1 Z4 Z5 Z6.1								Z6.2 SZ ZW ZN								20								PS			bar	_					
	3 angle of rotation, SM4 max.												0								21	pressure medium											0.0	_
	4 angle of rotation, in operation																				22	temperature of pressure medium							m				°C	_
	5 rotation time, total											tg sec.									23	temperature of environment volume flow								0			°C	
6 7	cushioning time cycle frequency											tdsec.Tsec.								_	24 25	stops								Q l/min.				
8 duration of operation per day											h										26	Z4 range of adjustment												
sketch/special features/																				20														
field of application/circuit diagram																														-				
																																\dashv		_
						-	-										-				$\left \right $				_					$\left - \right $		-+		-
																													-					
																														\square		-+		
																	-													$\left \right $		-+		┥
																																\rightarrow		